Covolume:
By the Noble-Abel gas equation for the propellant gas
P(V - Cb) = nRT0, where b (m3/kg) is the specific covolume (volume occupied by the
propellant gas molecules per unit mass) and T0 is the adiabatic flame temperature
Factoring V
PV[1 - (C/V)b] = nRT0
For two different trials
P2V[1 - (C2/V)b] = n2RT0
P1V[1 - (C1/V)b] = n1RT0
Dividing
P2V[1 - (C2/V)b]/{P1V[1 - (C1/V)b]} = n2RT0/(n1RT0)
Rearranging
(P2/P1)(V/V)[1 - (C2/V)b]/[1 - (C1/V)b] = (n2/n1)[RT0/(RT0)]
Simplifying
(P2/P1)[(1 - (C2/V)b]/[1 - (C1/V)b] = n2/n1
n2/n1 = (C2/MW)(C1/MW), where MW is the molecular weight of the propellant
Simplifying
n2/n1 = C2/C1
Dividing the numerator and denominator by V
n2/n1 = (C2/V)(C1/V)
Multiplying the numerator and denominator by δ (gm/cm3), the density of water
n2/n1 = [δC2/(δV)]/[δC1/(δV)]
Rearranging
n2/n1 = (δ/δ)[C2/(δV)]/[C1/(δV)]
Simplifying
n2/n1 = [C2/(δV)]/[C1/(δV)]
C/(δV) = L (gm/gm), the loading density
Substituting
n2/n1 = L2/L1
Substituting
(P2/P1)[1 - (C2/V)b]/[1 - (C1/V)b] = L2/L1
Multiplying the numerator and denominator of the C/V terms by δ
(P2/P1){1 - [δC2/(δV)]b}/{1 - [δC1/(δV)]b} = L2/L1
Rearranging
(P2/P1){1 - bδ[C2/(δV)]}/{1 - bδ[C1/(δV)]} = L2/L1
C/(δV) = L
Substituting
(P2/P1)(1 - bδL2)/(1 - bδL1) = L2/L1
Multiplying by (1 - bδL1)/(1 - bδL2)
(P2/P1) = (L2/L1)(1 - bδL1)/(1 - bδL2)
Multiplying by P1L1
P1L1(P2/P1) = P1L1(L2/L1)(1 - bδL1)/(1 - bδL2)
Rearranging
P2L1(P1/P1) = P1L2(L1/L1)(1 - bδL1)/(1 - bδL2)
Simplifying
P2L1(1 - bδL2) = P1L2(1 - bδL1)
Simplifying
P2L1 - P2L1bδL2 = P1L2 - P1L2bδL1
Rearranging
P2L1 - P1L2 = bδP2L1L2 - bδP1L1L2
Factoring bδ
P2L1 - P1L2 = bδ(P2L1L2 - P1L1L2)
Rearranging
bδ(P2L1L2 - P1L1L2) = P2L1 - P1L2
Dividing by δ(P2L1L2 - P1L1L2)
b = (P2L1 - P1L2)/[δ(P2L1L2 - P1L1L2)]
Factoring L1L2
b = (P2L1 - P1L2)/[δL1L2(P2 - P1)]
Factoring 1/δ
b = (1/δ)(P2L1 - P1L2)/[L1L2(P2 - P1)]
L = C/(δV0)
Factoring 1/δ
L = (1/δ)(C/V0)
d = C/V0, the loading density g/cm3
Substituting
L = (1/δ)d
Multiplying
L = d/δ
For two different trials
L1 = d1/δ
L2 = d2/δ
Substituting
b = (1/δ)(P2d1/δ - P1d2/δ)/[d1/δ)(d2/δ)(P2 - P1)]
Multiplying the numerator and denominator by δ<sup>2</sup>
b = (P2d1 - P1d2)/[d1d2)(P2 - P1)]
d = C/V0
For two different trials
d1 = C1/V0
d2 = C2/V0
Substituting
b = (P2C1/V0 - P1C2/V0)/[(C1/V0)(C2/V0)(P2 - P1)]
Multiplying the numerator and denominator by V02
b = V0(P2C1 - P1C2)/[C1C2(P2 - P1)], volume occupied by the propellant gas molecules/(unit charge) from two trials
Note: 0, 1, 2 are subscripts; 3 is an exponent
By the Noble-Abel gas equation for the propellant gas
P(V - Cb) = nRT0, where b (m3/kg) is the specific covolume (volume occupied by the
propellant gas molecules per unit mass) and T0 is the adiabatic flame temperature
Factoring V
PV[1 - (C/V)b] = nRT0
For two different trials
P2V[1 - (C2/V)b] = n2RT0
P1V[1 - (C1/V)b] = n1RT0
Dividing
P2V[1 - (C2/V)b]/{P1V[1 - (C1/V)b]} = n2RT0/(n1RT0)
Rearranging
(P2/P1)(V/V)[1 - (C2/V)b]/[1 - (C1/V)b] = (n2/n1)[RT0/(RT0)]
Simplifying
(P2/P1)[(1 - (C2/V)b]/[1 - (C1/V)b] = n2/n1
n2/n1 = (C2/MW)(C1/MW), where MW is the molecular weight of the propellant
Simplifying
n2/n1 = C2/C1
Dividing the numerator and denominator by V
n2/n1 = (C2/V)(C1/V)
Multiplying the numerator and denominator by δ (gm/cm3), the density of water
n2/n1 = [δC2/(δV)]/[δC1/(δV)]
Rearranging
n2/n1 = (δ/δ)[C2/(δV)]/[C1/(δV)]
Simplifying
n2/n1 = [C2/(δV)]/[C1/(δV)]
C/(δV) = L (gm/gm), the loading density
Substituting
n2/n1 = L2/L1
Substituting
(P2/P1)[1 - (C2/V)b]/[1 - (C1/V)b] = L2/L1
Multiplying the numerator and denominator of the C/V terms by δ
(P2/P1){1 - [δC2/(δV)]b}/{1 - [δC1/(δV)]b} = L2/L1
Rearranging
(P2/P1){1 - bδ[C2/(δV)]}/{1 - bδ[C1/(δV)]} = L2/L1
C/(δV) = L
Substituting
(P2/P1)(1 - bδL2)/(1 - bδL1) = L2/L1
Multiplying by (1 - bδL1)/(1 - bδL2)
(P2/P1) = (L2/L1)(1 - bδL1)/(1 - bδL2)
Multiplying by P1L1
P1L1(P2/P1) = P1L1(L2/L1)(1 - bδL1)/(1 - bδL2)
Rearranging
P2L1(P1/P1) = P1L2(L1/L1)(1 - bδL1)/(1 - bδL2)
Simplifying
P2L1(1 - bδL2) = P1L2(1 - bδL1)
Simplifying
P2L1 - P2L1bδL2 = P1L2 - P1L2bδL1
Rearranging
P2L1 - P1L2 = bδP2L1L2 - bδP1L1L2
Factoring bδ
P2L1 - P1L2 = bδ(P2L1L2 - P1L1L2)
Rearranging
bδ(P2L1L2 - P1L1L2) = P2L1 - P1L2
Dividing by δ(P2L1L2 - P1L1L2)
b = (P2L1 - P1L2)/[δ(P2L1L2 - P1L1L2)]
Factoring L1L2
b = (P2L1 - P1L2)/[δL1L2(P2 - P1)]
Factoring 1/δ
b = (1/δ)(P2L1 - P1L2)/[L1L2(P2 - P1)]
L = C/(δV0)
Factoring 1/δ
L = (1/δ)(C/V0)
d = C/V0, the loading density g/cm3
Substituting
L = (1/δ)d
Multiplying
L = d/δ
For two different trials
L1 = d1/δ
L2 = d2/δ
Substituting
b = (1/δ)(P2d1/δ - P1d2/δ)/[d1/δ)(d2/δ)(P2 - P1)]
Multiplying the numerator and denominator by δ<sup>2</sup>
b = (P2d1 - P1d2)/[d1d2)(P2 - P1)]
d = C/V0
For two different trials
d1 = C1/V0
d2 = C2/V0
Substituting
b = (P2C1/V0 - P1C2/V0)/[(C1/V0)(C2/V0)(P2 - P1)]
Multiplying the numerator and denominator by V02
b = V0(P2C1 - P1C2)/[C1C2(P2 - P1)], volume occupied by the propellant gas molecules/(unit charge) from two trials
Note: 0, 1, 2 are subscripts; 3 is an exponent